Skip links
NINFA

Métodos basados en Deep Learning para la segmentación semántica:  Arecaeae, Pinus, Platanus & Celtis australis

El objetivo de este proyecto es utilizar técnicas de Deep Learning para identificar y predecir Servicios Ecosistémicos de Infraestructuras Verdes a partir de imágenes de satélite de alta resolución, centrándose específicamente en la cuenca mediterránea y en una selección estratégica de taxones vegetales: la familia Arecaceae, los géneros Pinus y Platanus, y la especie Celtis australis.

El núcleo del proyecto implica la identificación y clasificación de estos taxones vegetales mediante algoritmos avanzados de segmentación de imagen. Las técnicas de Deep Learning serán fundamentales para crear modelos matemáticos destinados a la evaluación y predicción de cuatro Servicios Ecosistémicos. Estos servicios, alineados con la clasificación CICES (Common International Classification of Ecosystem Services), incluyen la regulación atmosférica, la regulación térmica y de humedad, el control de datos de erosión y la mejora de la interacción física y vivencial con el entorno natural.

entidad financiadora

Green Urban Data, S.L. S.L. IVACE: Valencian Institute for Business Competitiveness

Año

2022

Share

This website uses cookies to improve your web experience.
Explore
Drag