Skip links

SAMUEL

Sistema de Visión Artificial Aumentada Para la Caracterización Molecular y Morfológica del Cáncer de Piel

Elaborar un sistema de ayuda al diagnóstico basado en análisis de imagen histológica, información epigenética y datos clínicos para la detección del cáncer de piel. En particular, el objetivo es desarrollar algoritmos de machine learning para diferenciar entre melanoma y nevus, y evaluar el pronóstico de los casos de potencial maligno incierto.

La incidencia del cáncer de piel en el mundo occidental ha seguido una tendencia creciente en las últimas décadas, siendo el continente europeo el más afectado por el melanoma. La alta incidencia del cáncer de piel deriva en un aumento de la demanda del número de biopsias de piel, lo cual supone un reto logístico en los servicios de patología. Como motivación añadida, muchas de las lesiones remitidas a los departamentos de patología reportan directrices muy pobres para fundamentar la malignidad de la lesión. Esto conlleva una carga de trabajo significativa para los expertos, que tiene que emplear gran parte de su tiempo en analizar manualmente casos que finalmente resultan ser benignos (80% de los casos aproximadamente).

Entre los distintos tipos de cáncer de piel, el melanoma maligno es el más agresivo y peligroso, pues representa alrededor del 80% de las muertes asociadas al cáncer de piel. En este sentido, se hace esencial la detección precoz y el diagnóstico de la enfermedad en un estadio temprano a fin de reducir, en la medida de lo posible, las complicaciones asociadas. Sin embargo, la caracterización y diferenciación de estos tumores con respecto a otros tumores melanocíticos benignos o de potencial maligno incierto no es sencilla, ni siquiera para patólogos con experiencia. Además, dentro de las lesiones malignas, existen diferentes subtipos de melanoma con morfologías muy similares que suponen un reto para los expertos. Por esta razón, el proyecto SAMUEL pretende desarrollar herramientas de ayuda al diagnóstico que proporcionen a los patólogos una clasificación automática en diferentes subtipos de melanomas, así como una predicción del pronóstico del paciente. Para ello, se aplicarán algoritmos de inteligencia artificial sobre Whole-Slide Images (WSIs), que son las muestras de las biopsias digitalizadas en alta resolución. Además de las imágenes histológicas y de los datos clínicos del paciente, se tendrán en cuenta mecanismos moleculares que permiten la diseminación del melanoma cutáneo. En concreto, se llevarán a cabo procedimientos como la metilación del ADN y los microARNs, ya que, entre las distintas alteraciones epigenéticas existentes, se ha de mostrado que estas juegan un papel determinante en la progresión y desarrollo de los tumores melanocíticos.

En conclusión, con el proyecto SAMUEL se pretende desarrollar un sistema de ayuda al diagnóstico del cáncer de piel para diferenciar entre tumores melanocíticos malignos y benignos y para evaluar el pronóstico de los casos de potencial maligno incierto. Para ello, se llevarán a cabo algoritmos de inteligencia artificial que combinan imágenes histopatológicas, información epigenética y datos clínicos.

Agencia

Agencia Valenciana de la innovación

Años

2021 – 2023

Share

Socios

This website uses cookies to improve your web experience.
Explore
Drag